Incremental Feature Subsetting useful for Big Feature Space Problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incremental Feature Subsetting useful for Big Feature Space Problems

Dimensionality Reduction process is a means to overcome curse of dimensionality in general. When all features are available together, it is a way to extract knowledge from a population in a big feature space. On the contrary, dimensionality reduction is intriguing when update to feature space is streaming and the question arises whether one could reduce the feature space as and when the feature...

متن کامل

Target Class Supervised Feature Subsetting

Dimensionality Reduction may result in contradicting effectsthe advantage of minimizing the number of features coupled with the disadvantage of information loss leading to incorrect classification or clustering. This could be the problem when one tries to extract all classes present in a high dimensional population. However in real life, it is often observed that one would not be interested in ...

متن کامل

Incremental Feature Transformation for Temporal Space

Temporal Feature Space generates features sequentially over consecutive time frames, thus producing a very large dimensional feature space cumulatively in contrast to the one which generates samples over time. Pattern Recognition applications for such temporal feature space therefore have to withstand the complexities involved with waiting for the arrival of new features over time and handling ...

متن کامل

Incremental learning of feature space and classifier for face recognition

We have proposed a new approach to pattern recognition in which not only a classifier but also a feature space of input variables is learned incrementally. In this paper, an extended version of Incremental Principal Component Analysis (IPCA) and Resource Allocating Network with Long-Term Memory (RAN-LTM) are effectively combined to implement this idea. Since IPCA updates a feature space increme...

متن کامل

Dynamic Feature Space and Incremental Feature Selection for the Classification of Textual Data Streams

Real world text classification applications are of special interest for the machine learning and data mining community, mainly because they introduce and combine a number of special difficulties. They deal with high dimensional, streaming, unstructured, and, in many occasions, concept drifting data. Another important peculiarity of streaming text, not adequately discussed in the relative litera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computer Applications

سال: 2014

ISSN: 0975-8887

DOI: 10.5120/17057-7392